

Climate Change Stacking Game

CAN YOUR ECOSYSTEM HANDLE THE PRESSURE?

MAMMALIAN SHIFT

Climate change causes small mammals to seek out higher elevations, causing a change in distribution.

Move 2 secondary consumers from the southern most area to the northern most area in in your ecosystem.

Moritz et al. 2008

BIRD INFLUX

Changing temperatures cause birds to breed earlier, resulting in altered species interactions and exhausted resources. Remove 2 primary consumers from your ecosystem.

Walther et al. 2005

FI5H DISTRIBUTION

Rising temperatures cause fish to move towards the poles, resulting in extinction of unfit groups.

Move 1 tertiary consumer to the northern range of the species.

Perry et al. 2005

BUTTERFLY EXTINCTION

Increases in human activity causes species shifts and ultimately, extinction.
Remove 2 primary consumers from your ecosystem.

Parmesan & Matthews 1996

PLANT DISTRIBUTION

Climate change alters plant elevation and distributions, causing longer growing seasons, earlier flowering, and earlier harvest.
Remove 2 primary producers from your ecosystem.

Kelly & Goulden 2008

BUTTERFLY INFLUX

Butterflies start appearing earlier, but often cannot find food. Add 2 secondary consumers to your ecosystem.

Roy and Sparks, 2000

SPECIES INTERACTIONS

Temperature increases affect seasonal species interactions, organism fitness, and geographic range.

Remove 2 primary producers from your ecosystem.

Gilman et al. 2010

PLANT DISTRIBUTION

Warming climate shifts optimal monkey-flower ranges to higher elevations. Remove 2 primary producers from the southern side of your ecosystem and add them to the northern side.

Angert and Schemske 2005

SPECIES INTERACTIONS

A mild rise in temperature increases starfish feeding rates, reducing mussel populations.
Add 1 secondary

consumer to your ecosystem.

Broitman et al. 2009

SPECIES INTERACTIONS

A rise in temperature is stressful enough to reduce starfish feeding rates, increasing mussel populations.

Add 2 primary consumers to your ecosystem.

Broitman et al. 2009

SPECIES DISTRIBUTION

Spiders move to higher latitudes in response to high levels of climate warming.

Remove 1 secondary consumer from your ecosystem.

Chen et al. 2011

PLANT DISTRIBUTION

The pace of climate change exceeds the ability of trees to adapt to their new climates. Remove 2 primary producers from your ecosystem.

Davis and Shaw 2001

SPECIES INTERACTIONS

Species shifting upslope benefit from the increased area.
Add 1 primary producer to your ecosystem.

Elsen and Tingley 2015

PREDATOR SHIFT

Foxes move northwards and outcompete arctic foxes.

Add 1 tertiary consumer to your ecosystem.

Hersteinsson & MacDonald 1992

KEY

Primary Producer

Primary Consumer

Secondary Consumer

Tertiary Consumer

EC© 5TAX

ECOYSYSTEM CARDS

